FMS di- π^0 update

Xiaoxuan Chu 03/04/21

A brief reminder

$$x_1 = \frac{p_{T1} e^{y_1} + p_{T2} e^{y_2}}{\sqrt{s}}$$

$$x_2 = \frac{p_{T1} e^{-y_1} + p_{T2} e^{-y_1}}{\sqrt{S}}$$

FMS: 2.6< η <4.0

- Large cell detector: 2.6< η <3.3
- Small cell detector: $3.3 < \eta < 4.0$

0.0

0.0

×10⁻³

 $\pi/2$

Area=0.00018±0.00005

 $p_{T1} = 2.4-2.8 \text{ GeV} \\ p_{T2} = 2.0-2.4 \text{ GeV}$

Pedestal=0.00080±0.00008

 $\pi/2$

Width=0.44±0.10

0.0

π/2

STAR Preliminary

pAu BBCE>36000

- Data
- Fit

$p_T \rightarrow x-Q^2$ phase space

- Simulation studies for $di-\pi^0$ in pp collisions
 - x-Q² evolution on p_T
 - η dependence \rightarrow data

Input x_1 and x_2 from simulation trigger π^0 : p_{τ_1}

Input x_1 Vs x_2 from simulation $trigger \pi^0: p_{T1}$

Input Q² from simulation

x_1 dependence on η

trigger π^0 : p_{T1}

 $-3.3 < \eta < 4.0$

 $-2.6 < \eta < 4.0$

associated

 π^0 : p_{T2}

x_2 dependence on η

trigger π^0 : p_{T1}

associated

 π^0 : p_{T2}

- x_2 decreases by selecting more forward π^0 s
- x₁ and x₂ are more separated by selecting more forward pi0s

 Q^2 dependence on η

10

- Require trigger and associated π^0 hit on the small cell detectors of FMS: $3.3 < \eta < 4.0$
- Q^2 decreases by selecting more forward $\pi^0 s$

When $\eta \uparrow$, x_2 and $Q^2 \downarrow$

 Q^2 dependence on η

η dependence in pAu data?

Can we see more suppression at more forward directions?

η dependence in pp data?

η dependence in data

At small p_T :

- Trigger dependence trend:
 - o pp: Back-to-back di- π^0 yields \uparrow when $\eta \uparrow (1.8\sigma@ low p_T)$
 - o pAu: Back-to-back di- π^0 yields \downarrow when $\eta \uparrow (2.6\sigma@ \text{ low p}_{\text{T}})$

Summary

Based on the plot from Thomas Ullrich

Summary:

- Probing high $p_T \pi^0 \rightarrow low pT \pi^0$, large $x (Q^2) \rightarrow small x (Q^2)$
- Non saturation → Saturation region
- Slight η dependence shows in the data: FMS rapidity is high itself.

Back up

x dependence on η

trigger π^0 : p_{T1}

associated

 p_{T2}

- x₁ and x₂ are more separated by selecting more forward pi0s
- x₁ increases and x₂ decreases by selecting more forward pi0s

pp at low p_T : $(0.00608-0.00562)/sqrt(0.00014*0.00014+0.00022*0.00022)^{-1.8}$

